Booster les performances électriques des matériaux 2D avec des ponts moléculaires

10/03/21

Sciences et technologie 

Des chercheurs du laboratoire de nanochimie de l’Institut de science et d’ingénierie supramoléculaires (Isis), en collaboration avec le Trinity College de Dublin (Irlande) et l’Université de Cambridge (Royaume-Uni), ont mis au point une nouvelle stratégie moléculaire pour augmenter les performances des dispositifs électroniques à base de matériaux 2D semi-conducteurs. Ces résultats ont été publiés dans la revue Nature Nanotechnology.

La prochaine génération d'appareils électroniques devrait être imprimable, performante, légère et capable d'exprimer de multiples fonctions. À cette fin, de nouveaux matériaux semi-conducteurs sont hautement nécessaires. Entre les semi-conducteurs bidimensionnels (2D), les dichalcogénures de métaux de transition (TMD) occupent une place prépondérante et offrent un large éventail de propriétés électroniques, optiques et mécaniques.

Les TMD 2D peuvent être obtenus par exfoliation en phase liquide des cristaux massifs dans des solvants spécifiques. Ce procédé permet la production à grande échelle d’encres de TMD très concentrées, même s’il pâtit de la formation de défauts de structure qui nuisent aux performances des matériaux en (opto)électronique.

Une idée simple mais efficace

Les chercheurs de Strasbourg, Dublin et Cambridge ont fait un grand pas en avant en développant une stratégie de fonctionnalisation moléculaire afin de surmonter ces limitations. L’idée est simple mais efficace : utiliser de petites molécules pour simultanément « réparer » les défauts du matériau générés lors de l’exfoliation et ponter des feuillets voisins. De cette façon, la structure cristalline du TMD est restaurée et le transport de charge à travers le réseau interconnecté de manière covalente est amélioré, conduisant à des dispositifs électroniques (par exemple des transistors à couche mince) avec des performances électriques, une stabilité à l’eau et une robustesse mécanique supérieures.

Cette approche universelle constitue une avancée majeure et présente un grand potentiel pour des applications en (opto)électronique imprimée, flexible et portable, en (bio)détection ainsi qu’en (photo)catalyse.

Réseaux et partenaires de l'Université de Strasbourg

Logo Établissement associé de l'Université de Strasbourg
Logo de la Fondation Université de Strasbourg
Logo du programme France 2030
Logo du CNRS
Logo de l'Inserm Grand Est
Logo du programme HRS4R
Logo du réseau Udice
Logo de la Ligue européenne des universités de recherche (LERU)
Logo de EUCOR, Le Campus européen
Logo du réseau Epicur